National University Heart Centre, Singapore A member of the NUHS

Cardiac Rehabilitation for Athletic Individuals

Dr Yeo Tee Joo Consultant Cardiologist Director, Cardiac Rehabilitation Unit National University Heart Centre Singapore

Yong Loo Lin School of Medicine Faculty of Dentistry Saw Swee Hock School of Public Health Jurong Health Ng Teng Fong General Hospital

National University Cancer Institute, Singapore

National University Heart Centre, Singapore

> National University Centre for Oral Health, Singapore

National University Polyclinics

Scope

- Global burden of heart disease
- Physical activity trends
- Overview of CR
- A happy problem
 Principles of CR in athletes
- Classification of sport
- Existing guidelines
- Exercise testing & prescription
- HIIT vs MICE
- Practical advice

Top 10 global causes of deaths, 2016

Source: Global Health Estimates 2016: Deaths by Cause, Age, Sex, by Country and by Region, 2000-2016. Geneva, World Health Organization; 2018.

CVD is the leading cause of death and disability worldwide

It kills 17.5 million people a year

It causes 1/3 of all global deaths and 1/2 of all NCD related deaths

CARTOCK

Search ID: gronf04

garrin

I eat cheap greasy food so I can

save for my cardiologist bills

in the future.

Athletic individuals are not immune to heart disease

GROWTH IN POPULARITY OF MARATHON RUNNING

THE WORLDWIDE GROWTH FROM 2009 TO 2014 WAS **13,259/6** ASIA 92.43% USA 13,92% EUROPE 10,30%

+26.90% WOMEN'S GROWTH

+7.80%

MEN'S GROWTH

 \mathbf{T}

Top & Bottom Performing Countries RUSSIA (300%)

CHINA (259,47%) PHILIPPINES (211,90%)

Runrepeat.com

ARGENTINA (161,80%) INDIA (154,78%) AUSTRALIA (84,24%) PORTUGAL (64,72%) BRAZIL (40,42%) SPAIN (25,30%) JAPAN (23,45%) FRANCE (22,15%) USA (13,92%) CANADA (10,88%) UK (-5,47%) GERMANY (7,59%)

ITALY (-23,14%) FINLAND (-29,47%) SWITZERLAND (-32,59%)

Runningusa.org

From supervised activities, to a daily walk in the park, the idea is to get moving.

What is a CARDIAC REHABILITATION Program?

Cardiac Rehabilitation Programs Typically Consist Of The Following

> 5 Components:

2 Adopt a Heart Healthy Diet

This includes meals that are low in salt, and rich in whole grains, fruits, vegetables, low fat meats and fish.

Reduce Stress

Learn to control your daily stress through relaxation techniques, recreation, music and other various methods.

Most cardiac rehab programs offer methods to help you kick this harmful habit.

4 Medical Therapy

Follow your doctor's instructions carefully and take your medications on schedule.

Cardiac conditions eligible for CR

Box 1: Patient groups who benefit from cardiac rehabilitation*

- Patients with acute coronary syndrome—including ST elevation myocardial infarction, non-ST elevation myocardial infarction, and unstable angina—and all patients undergoing reperfusion (such as coronary artery bypass surgery, primary percutaneous coronary intervention, and percutaneous coronary intervention)
- · Patients with newly diagnosed chronic heart failure and chronic heart failure with a step change in clinical presentation
- Patients with heart transplant and ventricular assist device
- Patients who have undergone surgery for implantation of intra-cardiac defibrillator or cardiac resynchronisation therapy for reasons other than acute coronary syndrome and heart failure
- · Patients with heart valve replacements for reasons other than acute coronary syndrome and heart failure
- · Patients with a confirmed diagnosis of exertional angina

*According to NICE, Department of Health, BACPR, and European guidelines¹⁻¹²

<u>Class I recommendation</u> (various international cardiac societies/associations)

Benefits of Cardiac Rehabilitation

Heart Health

- Cholesterol and blood pressure measures
- · Ability to participate in exercise
- · Likelihood of quitting smoking
- Heart function, for those with heart failure

- · Progression of heart disease
- Hospital readmissions
- · Emergency room visits
- · Angina pain
- · Need for cardiac medications
- · Risk of further disability

mproves

mproves

Reduces

General Health & Well-Being

all-cause

mortality by

27%

cardiac

mortality by

31%

· Quality of life

Cardiac

rehabilitation

reduces

the risk of

- · Overall health
- · Adoption of healthy behaviours
- · Strength and vitality
- Ability to return to work and social activities
- Psychological well-being
- Ability to deal with stress, anxiety and depression

40 years of research involving more than 14,000 patients

Based on almost

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY 9-2016 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER VOL. 67, NO. 1, 2016 ISSN 0735-1097/536.00 7/dx.6ei.stg/10.1016/j.jacc.2015.10.044

ORIGINAL INVESTIGATIONS

Exercise-Based Cardiac Rehabilitation for Coronary Heart Disease Cochrane Systematic Review and Meta-Analysis

Safety of exercise-based CR

- Excellent safety profile
- Most lethal complications: ventricular arrhythmia, myocardial infarction, cardiac arrest
- Incidence rate from 1 in 300,000 to 1 in almost 800,000 patient-hours

I exercised once, but found I was allergic to it. My skin flushed and my heart raced. I got sweaty and short of breath. Very dangerous.

BOX 3.5 Contraindications to Exercise Testing

ABSOLUTE

- A recent significant change in the resting electrocardiogram (ECG) suggesting significant ischemia, recent myocardial infarction (within 2 d), or other acute cardiac event
- Unstable angina
- Uncontrolled cardiac dysrhythmias causing symptoms or hemodynamic compromise
- Symptomatic severe aortic stenosis
- Uncontrolled symptomatic heart failure
- · Acute pulmonary embolus or pulmonary infarction
- Acute myocarditis or pericarditis
- Suspected or known dissecting aneurysm
- Acute systemic infection, accompanied by fever, body aches, or swollen lymph glands

RELATIVE

- Left main coronary stenosis
- Moderate stenotic valvular heart disease
- · Electrolyte abnormalities (e.g., hypokalemia or hypomagnesemia)
- Severe arterial hypertension (*i.e.*, systolic blood pressure [SBP] of >200 mm Hg and/or a diastolic BP [DBP] of >110 mm Hg) at rest
- Tachydysrhythmia or bradydysrhythmia
- · Hypertrophic cardiomyopathy and other forms of outflow tract obstruction
- Neuromotor, musculoskeletal, or rheumatoid disorders that are exacerbated by exercise
- High-degree atrioventricular block
- Ventricular aneurysm
- Uncontrolled metabolic disease (e.g., diabetes, thyrotoxicosis, or myxedema)
- Chronic infectious disease (e.g., HIV)
- · Mental or physical impairment leading to inability to exercise adequately

*Relative contraindications can be superseded if benefits outweigh the risks of exercise. In some instances, these individuals can be exercised with caution and/or using low-level endpoints, especially if they are asymptomatic at rest.

Modified from (11) cited 2007 June 15. Available from: http://www.ncbl.nim.nih.gov/pubmed/12356646

The amazing potential of cardiac rehabilitation

Marathon Running

After Myocardial Infarction

Terry Kavanagh, MD, D Phys Med, FRCP(C); Roy H. Shephard, MD, (JAMA 229:1602-1605, 1974)

	Times					
Patient	Half-way, F min	ull Distance, min				
7	144	*				
4	123	272				
3	140	304				
5	140	315				
2	140	283				
1	130	299				
8	130	311				
6	140	287				
Average, all patients	 135.9	295.8*				

25 CENTS DAILY 50 CENTS SUNUAY VOLUME 41, NO. 229, 119TH YEAR

Ocala, Florida, Wednesday, April 17, 1985

Home

Young at heart, this marathon man

BOSTON, Tues. — Welshman Bryan Price, 45, ran the Boston Marathon with the heart of a 16-year-old a heart that became his in a transplant a little more than a year ago.

Price was believed to be the first heart-transplant patient to complete a marathon when he crossed the finishing line yesterday in five hours and 57 minutes, his doctor, Terence Kavanaugh, said.

"It was harder than

what I thought it would be. It was very hard and especially the last mile," Price said.

Asked if he planned to run another marathon, Price said, "I've done one. My ambition is done. We'll have to see. It's up to this team of people monitoring me...They're the bosses."

He referred to the Toronto rehabilitation pilot project. He is one of about 50 cardiac patients in a British programme based on the Canadian project, which Dr Kavanaugh helps supervise.

Price said he undertook a training programme of about 11 months with the Toronto project.

"Their first idea was to rehabilitate me so I could get about," he said. "I decided I would like to have a go at the marathon if it was okay with them."

Heart Transplant Recipient Runs Marathon

Bryan Price, 45, ran the Boston Marathon with the heart of a 16-year-old, thanks to a transplant just over a year ago.

Price, of Caldicot, Wales, said he did it "to make other transplant patients more confident."

He finished Monday in five hours and 57 minutes, said his doctor, Terence Kayanaugh. The winner crossed the line in 2:14.5.

"Oh, I'm feeling absolutely fine today ... I've got a little bit of stiffness in the calves. I thought I'd have more than that," Price said Tuesday.

It was his first marathon. Asked if he planned to run another, he said, "I've done one. My ambition is done. We'll have to see."

Kavanaugh said Price has trained since May 1984, four months after his transplant, and now jogs up to 60 miles a week.

First <u>heart</u>

transplant patient

to run Boston marathon (1985)

A Happy Problem: Principles of CR in athletic individuals

- Target activity/sport
- Underlying cardiac issues
- Any high risk features?
- ACC/ESC Recommendations
- Exercise testing
- Modality
- How early?
- ACSM guidelines

DAVE GRANLUND @ www.davegranlund.com

- High intensity interval training (HIIT)?
- Alternative modalities
- Goal setting
- Managing expectations
- Practical advice

Levine et al. JACC Dec 2015, 66 (21) 2350-2355

Sport Disciplines

Skill

Douvor
Power

Heart rate	+/++	Heart rate	++	Heart rate	++/+++	Heart rate	+++
Blood pressure	+	Blood pressure	+++	Blood Pressure	++	Blood Pressure	++
Cardiac output	+	Cardiac output	++	Cardiac Output	++/+++	Cardiac output	+++
Volume of training	-	Volume of training	+	Volume of training	++	Volume of training	+++
Cardiac remodeling	-	Cardiac remodeling	+	Cardiac remodeling	++	Cardiac remodeling	+++

- Archery
- Car/ motor racing
- Curling
- Equestrian
- Golf
- Sailing
- Shooting
- Table Tennis

- Alpine skiing
- Bobsleigh
- Discus / javelin
- Shot-putting
- Snowboarding
- Sprinting
- Water skiing
- Weightlifting
- Wrestling

- Basketball
- Cricket
- Fencing
- Football
- Handball
- Ice / field hockey
- Rugby
- Soccer
- Tennis
- Waterpolo
- Volleyball

- Canoeing
- Cross-country skiing
- Cycling
- Mid-long distance swimming
- Mid-long distance running
- Mid-long distance skating
- Pentathlon
- Rowing
- Triathlon

Few limitations in correctly selected patients!

Table 5. Evidence-based prescribable aerobic exercise intensity in cardiac patient groups

	Exercise intensity domains					
	Light to moderate	Moderate to high	High to severe	Severe to extreme		
Stable angina pectoris	\sqrt{a}	\sqrt{a}	\sqrt{a}			
Chronic CAD						
(no residual ischaemia)	\checkmark	\checkmark	\checkmark	\checkmark		
PCI	\checkmark	\checkmark	\checkmark			
Pacemaker	\checkmark	\checkmark				
ICD	\checkmark	\checkmark				
Chronic AF	\sqrt{b}	\sqrt{b}				
CABG	\checkmark	\checkmark	\checkmark			
Valve repair/replacement	\checkmark	\checkmark				
CHF	\checkmark	\checkmark	\checkmark			
LVAD	\checkmark					
Heart transplantation	\sqrt{c}	\sqrt{c}	\sqrt{c}			

Mezzani et al. Eur J Prev Card. 2012;20(3):442-467.

AHA/ACC SCIENTIFIC STATEMENT

Eligibility and Disqualification Recommendations for Competitive Athletes With Cardiovascular Abnormalities: Preamble, Principles, and General Considerations

A Scientific Statement From the American Heart Association and American College of Cardiology

- LVEF > 50%
- Asymptomatic
- No inducible ischemia
- No electrical instability

It is reasonable for patients with clinically manifest ASCAD to participate in all competitive activities if their resting left ventricular ejection fraction is >50%, they are asymptomatic, and they have no inducible ischemia or electrical instability (*Class IIb; Level of Evidence C*).

CURRENT OPINION

Recommendations for participation in leisure time or competitive sports in athletes-patients with coronary artery disease: a position statement from the Sports Cardiology Section of the European Association of Preventive Cardiology (EAPC)

• ≥1 critical coronary stenosis of a major coronary artery >70% or LM >50%

• Ejection fraction <50%

European Heart Journal (2018) 0, 1-8

European Society doi:10.1093/eurheartj/ehy408

ESC

of Cardiology

- Exercise-induced ischaemia
- Dyspnoea at low exercise intensity (angina equivalent)
- Relevant ventricular tachyarrhythmias (i.e. NSVT, polymorphic or very frequent VEBs)
- Dizziness or syncope on exertion
- High degree of myocardial scarring on CMR imaging

Borjesson et al EHJ 2018: 0, 1–8

Valvular heart disease

Table 1 Recommendations for participation in competitive sport in relation to type and severity of valve disease in asymptomatic individuals								
_	Recommendation for sports participation							
Valve lesion	Mild	Moderate	Severe					
Mitral regurgitation*	All sports	All sports if LVEDD <60 mm (or <35.3 mm/m ² in men and <40 mm/m ² in women) if good LV function, PAP <30 mm Hg and good functional capacity.	May compete in all sports after detailed discussion with physician if LVEDD <60 mm (or <35.3 mm/m ² in men and <40 mm/m ² in women) if good LV function, PAP <30 mm Hg and good functional capacity.					
Mitral stenosis*	All sport if MVA >2.0 cm ² and good functional capacity. No collision or body contact sport if anticoagulated for AF.	Low dynamic/static sport if MVA $<\!\!2.0\text{cm}^2\!\!-\!\!>\!\!1.5\text{cm}^2$ and good function capacity.	No competitive sport (except sport with low dynamic and/ or static component) if MVA <1.5 cm ² .					
Aortic regurgitation*	All sport	All sports if, LVESD <50 mm (male) or <40 mm (female) and good LV systolic function and functional capacity.	May compete in all sport after discussion with physician if LVESD <50 mm (male) or <40 mm (female) and good LV systolic function and functional capacity.					
Aortic stenosis*	All sports if AVA >1.5 cm ² or jet velocity <3 m/s.	Low intensity sport if AVA 1–1.5 cm ² or jet velocity 3–4 m/s provided good functional capacity and no evidence and no evidence of myocardial ischaemia, arrhythmias or flat blood pressure response.	No competitive sport (except low intensity) if AVA <1 $\rm cm^2$ or valve jet >4 m/s.					

*For mixed valvular disease, the recommendation for the predominant valve lesion should be followed.

		T		AHA/ACC SCIENTIFIC STATEMENT
				Eligibility and Disqualification
Task Force	Entity	Task Force	Entity	Recommendations for Competitive Athletes
1. Classification of Sports: Dynamic, Static and	Classification	6. Hypertension (45)	Hypertension	With Cardiovascular Abnormalities:
Impact (10)	Impact and anticoagulation	7. Aortic Diseases, Including Marfan Syndrome (27)	Marfan, other genetic, bicuspid, dilated,	Preamble, Principles, and
2. Preparticipation Screening for Cardiovascular			dissection, post-operative	General Considerations
Disease in Competitive Athletes (43)		8. Coronary Artery Disease (38)	Atherosclerotic disease	A Scientific Statement From the American Heart Association and American College of Cardiology
3. Hypertrophic Cardiomyopathy, Arrhythmogenic	Hypertrophic cardiomyopathy		Coronary spasm	+
Right Ventricular Cardiomyopathy and Other	LV noncompaction	_	Coronary dissection	†
Cardiomyopathies, and Myocarditis (29)	Other myocardial diseases	_	Myocardial bridging	+
	Myocarditis	_	Kawasaki	+
	Arrhythmogenic RV cardiomyopathy	_	Coronary vasculitis	+
	Pericarditis	-	Transplant vasculonathy	+
4. Congenital Heart Disease (28)	ASD, untreated	0 Arrhythmias and Conduction Defects (12)	Sinus bradwardia	+
	ASD, after repair	7. Armyunnas and Conduction Detects (12)		+
	VSD, untreated	_	AV block, first degree	+
	VSD, after repair	_	AV block, second degree type I	+
	PDA, untreated		AV block, second degree type II	+
	PDA, after repair		Complete RBBB	_
	Pulmonic valve stenosis (treated and		Complete LBBB	_
	untreated)	-	Congenital AV block	
	Aortic valve stenosis, untreated	-	Acquired complete heart block	
	Aortic valve stenosis, after correction	-	Permanent pacemaker	
	Coarctation of aorta, untreated	_	Atrial fibrillation	
	Coarctation of aorta, treated	_	Atrial flutter	Ť
	Elevated pulmonary vascular resistance	-	AVNRT, AVRT, atrial tachycardia	†
	Ventricular dysfunction after CHD surgery	_	Premature ventricular contractions	†
	Cyanotic CHD, including TOF, unoperated		Nonsustained VT	+
	or shunt	-	Sustained monomorphic VT	+
	Post-operative TOF	-	Ventricular flutter, fibrillation, polymorphic	+
	Transposition, after switch	+	VT	
	Congenitally corrected transposition	-	Syncope	+
	TGA, after arterial switch	-	ICDs	+
	Fontan	10. The Cardiac Channelonathies (11)	Long OT Brugede CPVT	+
	Ebstein anomaly	11. Drugs and Performance Enhancing Substances	NIA	+
	Coronary anomalies	(46)	INA	
5. Valvular Heart Disease (44)	Aortic stenosis	13 Emergence Action Plans, Bernstitution	NTA	+
	Aortic regurgitation	12. Emergency Action Fians, Resuscitation,	18/4	
	Mitral stenosis	External Defibrillators (18)		
	Mitral regurgitation	13 Commotio Cordis (41)	Commotio cordis	
	Post valve surgery	14. Sigkle Cell Trais (40)	Sigkle cell trait	
		14. Sickle Cell I fait (40)	Sickle cen trait	

More detailed exercise testing necessary in athletic individuals

- 6-minute walk test (walking speed)
- Treadmill testing (Maximal heart rate, METS)
- Cardiopulmonary exercise testing (VO2)

• Symptoms, rate of perceived exertion, presence of ischemia / arrhythmia (threshold), BP & HR responses

Exercise testing – how early is safe?

ACC/AHA 2002 guideline update for exercise testing: summary article 7 / 10

🖒 🛨 🖶 🏳 🕇

2002 Exercise Testing Guideline Recommendation

Class I

1. Before discharge for prognostic assessment, activity prescription, evaluation of medical therapy (submaximal at about 4 to 6 days).*

2. Early after discharge for prognostic assessment, activity prescription, evaluation of medical therapy, and cardiac rehabilitation if the predischarge exercise test was not done (symptom limited; about 14 to 21 days).*

3. Late after discharge for prognostic assessment, activity prescription, evaluation of medical therapy, and cardiac rehabilitation if the early exercise test was submaximal (symptom limited; about 3 to 6 weeks).*

ACSM's Guidelines for Exercise Testing and Prescription

- FITT-VP principle
- Frequency (how often)
- Intensity (how hard)
- Time (duration)
- Type (mode)
- Volume (amount)
- Progression (advancement)
- For aerobic as well as resistance (strength) training

ACSM recommendations for outpatients with CVD

- Frequency: ≥3x/week
- Intensity:
 - 40-80% of exercise capacity
 - RPE 11-16
 - Target HR ~10 beats below ischemic threshold
- Time: 20-60 min/session + 5-10 min warm up/cool down
- Type: Aerobic + Resistance

		Rel	ative Intensi	ty
Intensity	%HRR or %VO ₂ R	%HR _{max}	% ^{VO} 2max	Perceived Exertion (Rating on 6–20 RPE Scale)
Very light	<30	<57	<37	Very light (RPE ≤9)
Light	30-<40	57–<64	37–<45	Very light to fairly light (RPE 9–11)
Moderate	40-<60	64–<76	46-<64	Fairly light to somewhat hard (RPE 12–13)
Vigorous	60–<90	76–<96	64–<91	Somewhat hard to very hard (RPE 14–17)
Near maximal to maximal	≥90	≥96	≥91	≥ Very hard (RPE ≥18)

- Common for athletic individuals to push boundaries
- Training HR may lean toward more moderate to vigorous intensity
- Any symptoms should be taken seriously
- HRR method: Target HR (THR) = [(HR_{max/peak}^a HR_{rest}) × % intensity desired] + HR_{rest}
- VO₂R method: Target VO₂R^c = [(VO_{2max/peak}^b VO_{2rest}) × % intensity desired] + VO_{2rest}
- HR method: Target HR = $HR_{max/peak}^{a} \times \%$ intensity desired
- \dot{VO}_2 method: Target $\dot{VO}_2^c = \dot{VO}_{2max/peak}^b \times \%$ intensity desired
- MET method: Target MET^c = [(VO_{2max/peak}^b)/3.5 mL · kg⁻¹ · min⁻¹] × % intensity desired

ORIGINAL ARTICLE

Cardiac Arrest during Long-Distance Running Races

Jonathan H. Kim, M.D., Rajeev Malhotra, M.D., George Chiampas, D.O., Pierre d'Hemecourt, M.D., Chris Troyanos, A.T.C., John Cianca, M.D., Rex N. Smith, M.D., Thomas J. Wang, M.D., William O. Roberts, M.D., Paul D. Thompson, M.D., and Aaron L. Baggish, M.D., for the Race Associated Cardiac Arrest Event Registry (RACER) Study Group

- Cardiac arrest most common towards the end of long distance races
- Multifactorial
 - environmental factors
 - dehydration
 - electrolyte
 - abnormalities
 - sprinting to the finish

N Engl J Med 2012; 366:130-140

RATE OF PERCEIVED EXERTION (RPE)

BORG RPE	MODIFIED RPE	BREATHING	TRAINING ZONE	% of MHR*	EXERCISE TYPE
6	0	No Exertion			
7	U		4	E00/ 600/	Worm up
8	4	Very Light		50%-60%	warni up
9	1				
10	0			60%-70%	Recovery
11	2	Deeper but comfortable breathing.	2		
12	0				
13	3	Aware that breathing is harder; able to	0	700/ 000/	Asushis
14	4	talk but difficult to hold conversation	3	70%-80%	Aerodic
15	5	Starting to breathe hard and getting		000/ 000/	Ananyahia
16	6	uncomfortable	4	80%-90%	Anaeropic
17	7	Deep and forceful breathing.			
18	8	Uncomfortable and not wanting to talk	5	90-100%	VO2 Mov
19	9	Extremely hard			VU ² Max
20	10	Maximum exertion			

* % of maximum heart rate

Accurate heart rate monitoring

Table. Concordance Correlation Coefficients for Each Heart Rate Monitor

	Agreement With E		
Device	Concordance Corr Coefficients (95%	A A	
Polar H7	.99 (.987991)		
Apple Watch	.91 (.884929)	[-27 / +29 bpm]	
Mio Fuse	.91 (.882929)	[-27 / +29 bpm]	Sha CARTOON
Fitbit Charge HR	.84 (.791872)	[-34 / +39 bpm]	Search ID form
Basis Peak	.83 (.779865)	[-39 / +33 bpm]	It's an Apple watch I use it to count my step

INFERTOL

Progression of exercise

How to gauge readiness for progression?

→ objective: heart rate during exercise BELOW prescribed range
 → subjective: RPE < 11

DO NOT progress when:

- RPE consistently > 14
- HR above training range
- MSK injury / feeling unwell
- new medical status
- new change in medication

A Graded Approach to Exercise Conditioning

Chugh & Weiss. JACC 2015; 65:493–502

HIIT vs. MICE

High Intensity

- Intervals of up to four minutes duration
- ~ 85-95% peak heart rate (HRpeak)
- >85% Heart rate reserve
- >85% VO2 reserveRPE ~18

Moderate Intensity

- <u>>30 minutes of aerobic</u> exercise (<80% HRpeak)
- sustainable for the duration of the session
- 40-60% HRR
- 40-60% VO2 reserve

These are relative values that must be individually prescribed

HIIT n = 547

MICT n = 570

High-Intensity Interval Training for Patients With Cardiovascular Disease—Is It Safe? A Systematic Review

Michael A. Wewege, BExPhys;* Dohee Ahn, BExPhys;* Jennifer Yu, MBBS; Kevin Liou, PhD; Andrew Keech, PhD

- Commonest HIIT protocol: Scandinavian (4x4-min intervals with 3-min recovery intervals); Others: intervals 30 sec to 3 min
- HIIT vs MICT improvement in:
 - VO2peak
 - Insulin sensitivity and glucose control
 - Body composition
 - Vascular function

- HIIT most appropriate for:
 - Younger pts
 - Less complex CVD (eg, PCI only or NYHA I)
 - Nil/stable symptoms
 - Normal BMI
 - Normotensive
 - Relatively high baseline fitness
 - Recent history of regular vigorous physical activity
- AE: HIIT 1 major CV event per 11 333 hrs + 1 minor CV AE and 3 non CV AE (primarily MSK) vs MICT – 2 non CV AE

Preventive Cardiology ESC European Society of Cardiology

Review

Nordic walking for individuals with cardiovascular disease: A systematic review and meta-analysis of randomized controlled trials

European Journal of Preventive Cardiology 0(00) 1–18 © The European Society of Cardiology 2017 Reprints and permissions: sagepubc.ouk/JournalsPermissions.nav DOI: 10.1177/2047487317738592 journals.sagepub.com/home/ejpc

(\$)SAGE

Lucia Cugusi¹, Andrea Manca², Tee Joo Yeo³, Pier P Bassareo¹, Giuseppe Mercuro¹ and Juan C Kaski⁴

Exercise capacity (METs)

	NM	/+CCV	'R	(CCVR			SMD	SMD
Study or subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, random, 95% CI	IV, random, 95% CI
Kocur 2009 ²⁴	21.3	25.2	40	7	33.5	20	66.6%	0.50 (-0.04, 1.05)	
Wilk 2005 ²³	30.3	33.5	20	14.1	36.1	10	33.4%	0.46 (-0.31, 1.23)	
Total (95% CI)			60			30	100.0%	0.49 (0.04, 0.93)	
Heterogeneity: Tau ² = 0.00; Chi ² = 0.01, df = 1 (p = 0.93); l^2 = 0%				-1 -0.5 0 0.5 1					
Test for overall effect: $Z = 2.15$ ($p = 0.03$)					Favours (CCVR) Favours (NW+CCVR)				

Nordic walking is *feasible* and *promising* for individuals with cardiovascular disease

Practical advice for the athlete

- Outdoor sports
- Environmental factors can't be mimicked during training
- Temperature
- Humidity
- Crowd support adrenaline
- Race at training pace
- Resist temptation to sprint to finish
- Hydrate/refuel appropriately
- Medication compliance
- Listen to your body (symptoms)
- DO NOT race when ill

70.3, M50-54 Finish Time: **06:00:36** - PRELIMINARY

🕙 Finish Time

6:00:36

View Details

29th Place out of 72 M50-54

296th Place out of 973 by Gender

340th Place out of 1,142

50/Caucasian/male Hyperlipidemia Angina PCI to pLAD 80% 2016 Excellent baseline fitness

TMX post PCI (2016)

- MHR 164 (96% pred)
- 15 min (Bruce)
 - 17.1 METS

TMX pre-ironman (2018)

- MHR 181 (107% pred)
- 21 min (Bruce)
- 23.7 METS

Overall

Conclusion

- Highly motivated patient population
- Compliance is unlikely an issue
- Safety & patient selection is paramount
- Higher likelihood of exceeding exercise prescription
- Go slow to go fast
- Environmental factors play a big part
- Discuss (AND respect) risk-benefit ratios from athlete's perspective

theAwkwardYeti.com

Stay tuned for SPCRS 2019 (End-October)!

FRIDAY - SATURDAY 20 - 21 OCTOBER 2017

Singapore Prevention & Cardiac **Rehabilitation Symposium 2017**

Advances in Cardiac Rehabilitation for Improved Health : Special Focus on E-Health

NOVOTEL SINGAPORE

Thank you

